[AD & Technology] "광고분야에서 딥러닝의 역할과 기회"
광고계동향 기사입력 2015.06.08 05:51 조회 17332

최근 IBM의 왓슨, 구글의 음성인식, 애플의 시리 등의 인공지능 기술의 발전이 하루가 멀다하고 눈부신 성장을 보여주고 있는 이유 중에 큰 축을 차지하는 기술이 바로 머신러닝과 머신러닝 기법 중에 급부상 중인 딥러닝 기법이다. 특히 딥러닝은 근래 들어 빅데이터와 하드웨어 등 연관분야의 발전에 힘입어 탁월한 성능을 보여주고 있으며, 얼굴인식, 음성인식 등의 인공지능 분야 기술 실용화에 앞장서며 기술적 메인스트림이 되어가고 있다. 이러한 인공지능, 머신러닝, 딥러닝의 개념에 대해 알아보고 현재 산업계의 동향과 함께 앞으로의 광고분야에서의 역할과 기회에 대해서 짚어보고자 한다.
  
글 ┃ 곽동민 딥큐먼 인공지능 연구 그룹 (with 박세원, 이한남)
 
 
1. 인공지능> 머신러닝>딥러닝이란?
 
인공지능이란 어원 그대로 사람의 지능을 기계적으로 모사하는 컴퓨터 사이언스의 한 분야다. 사람의 지능적인 행동을 컴퓨터로 처리하기 위해서 눈·귀·입의 역할과 언어를 이해하기 위한 처리방법 등이 연구되며 각각을 비전, 자연언어처리, 음성인식·합성 등의 분야로 나눠 연구를 진행하고 있다. 특히 이러한 인공지능 분야의 문제를 해결하기 위해 가장 널리 쓰이는 기법으로는 머신러닝(기계학습)이라는 기법이 있으며 최근까지도 활발히 연구되어 전 방위적으로 산업계에 활용되고 있다. 그럼 머신러닝이란 무엇인지 간략히 알아보자 .
  
머신러닝이란 관찰된 데이터를 통해 목적에 맞는 해답을 찾기 위한 메타프로그래밍(알고리즘을 통해 자동으로 만들어지는 프로그램)이라고 할 수 있다. 여기서 해답이란 분류, 예측, 군집화, 추천 등이 될 수 있으며 이 해답을 찾기 위해 다양한 알고리즘에 데이터세트를 입력하여 새로운 프로그램 또는 모델을 창조해내는 작업이라고 할 수 있다. 그리고 각 해답을 찾기 위해 머신러닝 알고리즘에 입력하는 데이터세트를 훈련용 데이터세트라고 하는데, 이 데이터세트를 어떻게 구성하는가에 따라 지도학습과 비지도학습으로 나눌 수 있다.
 
지도학습이란 말 그대로 특정 데이터에 대한 해답을 제시, 지도함으로써 알고리즘을 통해 배워나가는 과정이고 비지도학습이란 특정 데이터에 대한 해답을 제시하지 않은 상황에서 알고리즘 스스로 데이터들간의 관계나 특이성을 배워나가는 과정이라고 할 수 있다. 지도학습이 실생활에 적용된 사례를 보면 얼굴 인식, 자동차 번호판 인식, 신용카드 도난방지 시스템 등의 분류나 인식 문제에서 쉽게 찾아볼 수 있다. 비지도학습의 사례로는 고객 데이터베이스를 통해 타깃 마케팅의 자료로 활용하기 위한 고객 군집화, 쇼핑몰 등에서 흔히 접하는 장바구니분석을 통한 상품 끼워팔기 등이 있다. 이러한 지도학습과 비지도학습을 ‘꼭 어디에 적용해야 된다’라는 은탄환(Silver bullet)이 있는 것은 아니며 해결하기 위한 문제가 무엇인가, 그리고 그것을 해결하기 위해 관찰된 데이터는 무엇인가에 따라서 적절한 머신러닝 알고리즘을 선택하게 되고 Trial and Error를 통해 반복적으로 좀 더 나은 해답을 찾아나가게 된다.
이러한 머신러닝의 절차를 다음으로 압축해볼 수 있다.
  
1.문제의 정의 2.데이터의 수집 및 관찰 3.관찰된 데이터의 전처리 4. 전처리된 데이터들의 특징을 추출 5. 목적에 맞는 알고리즘 선택 및 훈련 6. 검증 7. 모델해석 8.최종 솔루션(모델) 선택
 
즉 2~7의 과정을 수도 없이 반복하여 좀 더 나은 결과를 찾아나가는 것이 머신러닝의 과정이라고 볼 수 있으며 7번 단계의 모델에 대한 해석과정을 얼마나 손쉽게 접근할 수 있는가에 따라서 화이트박스 모델과 블랙박스 모델로 나뉘며, 데이터의 확률분포를 통해 배워나가는가의 유무에 따라서 Generative model, Discriminative model로 나눠볼 수 있다. 여기서 화이트박스란 모델 내부를 속 시원히 내다볼 수 있는 모델들을 들 수 있으며 이를 통해 어떤 특징이 모델에 영향을 주었는지 안 주었는지 등이 파악된다. 반면 블랙박스 모델은 모델 내부를 속 시원히 내다보기 힘든 모델들을 일컬으며 여러 단계를 거치거나 대략적으로만 모델에 영향을 미친 특징들을 파악할 수 있다. 
 
1-1. 딥러닝이란
 
딥러닝은 머신러닝 기법 중에 하나로 말 그대로 깊은 또는 심화된 학습의 과정을 일컫는다.
위에서 논의한 머신러닝의 과정과 별반 다르지 않으며 특히, 블랙박스 모델로 잘알려진 뉴럴넷(Artificial Neural Network)을 통해 태동되었다. 본래 뉴널넷은 인간의 뇌 구조와 정보전달과정을 모사하여 만들어낸 수학적 모델로 1950년대 퍼셉트론으로부터 시작되어 현재까지 이르게 되었다. 뉴럴넷은 입력과 출력이라는 두 가지 레이어 구조의 얕은(Shallow) 아키텍처로 시작하여 중간에 숨은(Hidden) 레이어가 쌓여나가면서 복잡하고 깊은(Deep) 아키텍처로 발전해오고 있으며 이들 사이의 관계를 파라미터를 통해 조정할 수 있는 구조와 메커니즘을 갖고 있다. 이렇게 정의된 아키텍처에 적당한 양의 데이터를 입력하여 선형 맞춤과, 비선형 변환을 통해 각 레이어 간의 관계인 파라미터들을 갱신하는 반복적인 과정을 통해 복잡한 문제들을 해결해 나간다. 즉 추상적으로 표현하자면 데이터들을 구분할 수 있도록 우선 구분선을 긋고 이 공간들을 구부리거나 합하는 것을 반복하여 최대한 잘 구분할 수 있는 구분선을 만들어나가는 과정이 뉴럴넷의 학습 방법이자 딥러닝의 방법이다.
  

뉴럴넷에서 데이터를 학습해나가는 과정 출처: http://colah.github.io/
 
 
이러한 과정에 있어 중요한 것은 데이터이며, 이 데이터를 파라미터로 표현하여 최대한 데이터에 근접하게 갱신하고 조정하는 과정이 최적화(Optimization)이라고 한다. 또한 뉴럴넷의 아키텍처는 사용하는 데이터에 맞게 설계되어야 한다. 예를 들어 파라미터가 너무 많거나 적을 경우에는 Overfitting, Underfitting 등의 문제가 발생할 수 있으며 기껏 열심히 학습해 놓은 뉴럴넷 모델이 그릇된 결과를 내놓는 경우가 발생한다. 결론적으로 딥러닝은 숨은 레이어가 많은 딥뉴럴넷 아키텍처에서 많은 양의 데이터를 학습하는 과정이라고 할 수 있겠다(이는 레이어와 레이어 사이의 파라미터의 양에 따라 정보의 학습 수용력이 결정되는 것을 뜻하며, 딥아키텍처라면 당연히 많은 양의 학습 수용력을 갖게 될 것이다).
  
 
1-2. 그렇다면 왜 지금 이 시기에 딥러닝이 부흥하고 있는가?
 
위에서도 언급했듯이 뉴럴넷은 1940년대부터 오랜 시간 발전되어온 방법론으로 80년대에 ‘역전파’라는 최적화 방법이 소개되면서 다양한 분야에 적용되어 절정기에 이르게 되지만 이후 90년대에 들어 한계를 드러내기 시작하면서부터 암흑기를 만나게 된다(이에 반해 비선형 함수를 이용한 커널 방법론-SVM, GMM 등-들이 급부상하면서 대세를 이루게 되었다).
과거 이러한 한계를 갖게 된 주요 요인으로는 깊어지는 레이어 구조에서 파라미터들이 최적의 값을 찾기 어려워지는 Local Minima 함정에 빠지거나 많은 양의 연산을 감당할 수 있는 하드웨어의 부족과 오류 역전파 알고리즘을 통해 발생하는 오차 신호가 사라지는 현상 (Vanishing gradient problem) 등의 학습 알고리즘 부재가 크게 작용했다.
 
하지만 인터넷 및 소셜 미디어 등을 통해 생성되는 거대한 데이터와 그래픽하지만 인터넷 및 소셜 미디어 등을 통해 생성되는 거대한 데이터와 그래픽 카드, 클라우드 인프라스트럭처 등의 하드웨어 발전으로 인해 과거의 문제점들이 하나 둘씩 해결되어오는 것과 동시에 토론토 대학의 힌튼 교수, 스탠포드의 앤드류 응 교수 등의 석학들이 내놓은 해결 방법들을 통해 급격한 성능의 향상을 이룩하고 있다. 즉, 이들 부흥 요인을 정리해 보면 다음과 같다.
 
1)Pre-trainig
 
2006년에 토론토대학교의 힌튼 교수가 제안한 비지도학습의 방법으로 미리 데이터에 대한 확률분포 등을 학습함으로써 노이즈 등을 감소시켜 지역 최저점에 빠지는 함정에서 벗어날 수 있게 되었다.
 
2)특정추출과 인식을 하나의 뉴럴넷에서 수행
 

기존의 머신러닝 과정에서 특징추출 단계를 보면 도메인 전문가에 의해 해당 데이터에 대한 특징을 가정하고 추출해 낼 수 있는 알고리즘을 직접 만들어 문제를 해결해 나갔다. 반면 딥러닝에서는 이와 같은 과정을 뉴럴넷 아키텍처 내에 포함시켜 데이터 추출자체도 학습하는 효과를 얻어내어 진정 스스로 학습하는 모데을 추구하고 있다. 계를 들어 이미지 자동 분류 등에서 큰 성공을 거두고 있는 Concolution Neural Net의 Convoltiion Layer 와 Pooling Layer들을 통해 입력된 이미지에서 중요한 특징들을 자동 추출해서 학습해 나가는 것을 볼 수 있다.
 

출처 : http://karpathy.github.io/ Convolution Neural Net 추출된 특징맵의 모습
 
 
3)빅데이터와 GPU
 
레이어가 깊은 딥뉴럴넷의 경우 많은 수의 파라미터가 존재하며 Overfitting 등의 발생으로 일반화 능력이 저하되어 전체적인 성능 저하로 이어질 수 있다.  반면, 학습 수용력(Capacity)은 증가하기 때문에 매우 많은 수의 학습 데이터가 사용 가능한 경우는 그로부터 많은 정보를 학습할 수 있음을 의미하게 된다. 과거에는 수집하기 어려웠던 대용량의 대이터가 이제는 유튜브나 플리커, 트위터 등의 소셜미디어를 통해 구할 수 있고 정제하는 작업 또한 CrowdSourcing 서비스(Mechanical Turk) 등을 통해 적은 노력과 비용으로 해결 할 수 있게 되었다. 또한 어마어마한 연산량을 CPU가 아닌 좀 더 저렴한 CPU 병렬 프로그래밍으로 해결할 수 있었던 것이 크게 작용했다.
 
 
1-3. 딥러닝의 미래
 
현재 산업계에서는 얼굴인식, 객체인식, 음성인식, 자연어처리의 일부 등에서 훌륭한 효과를 내고 있으나 아직 개척하지 못한 영역이 더욱 많아. 그렇다고 이 모든 영역을 딥러닝으로 해결할 수 있는 것 또한 아닐 것이다. 하지만 본격적으로 다뤄지기 시작한 시점으로 볼 때 아직 딥러닝은 태동하기 시작하는 단계라는 것은 부정할 수 없을 것이며 이것이 앞으로의 미래를 밝게 점쳐볼 수 있는 대목이다. 특히 구글이나 스탠포드 등에서 연구된 자동 이미지 캡션 생성시스템 등의 추세로 볼 때 기존에 각 인공지능의 각 영역별로 개별적으로 진행되어오던 프로젝트나 문제들이 영역을 파괴하고 데이터를 공유하며 샐운 문제를 풀어나가기 시작한 것을 보면 긍정적인 모습을 기대해볼 수 있을 것이다.
 

출처 : http://cs.stanford.edu/ 이미지 데이터와 텍스트 데이터를 동시에 활용
 
또한 긍정적인 미래와 더불어 지속적으로 데이터와 하드웨어 인프라(GPU 병렬처리 등), 다양한 방법론 등이 개발돼야만 할 것이다. 그리고 과거 뉴럴넷이 그래왔듯이 언젠가는 새로운 방법론이나 기존의 커널 방법론들이 지금에 딥러닝의 문제점을 보완하거나 더 나은 성능으로 자리매김할 수 있기 때문에 어느 한 분야만을 고집해서는 안 될 것이며, 골고루 이 분야의 트렌드를 파악해 두는 것이 효과적일 것으로 사료된다.
 
 
2. 현재 산업계의 트렌드
 

인공지능 관련 분야의 업체 리스트 출처 : http://www.shivonzilis.com/
 
위의 그림을 보면 현재 인공지능 관련 분야 업체들의 리스트를 한눈에 볼 수 있다. 특히 딥러닝 분야에 구글이나 페이스북, 바이두의 활약에 두드러지고 있다. 이들은 주로 자사의 검색, 소셜네트워크 서비스에 음성 인식, 이미지 인식, 얼굴 인식 등의 분야에 적용하고 있다. 이들과 반대로 Vicarious, Ersatz lab 등의 작은 규모의 스타트업이 활발하게 움직이고 있으며 이들은 딥러닝 알고리즘과 ‘Machine learning as a service’ 형태로 제공하는 것을 목적으로 연구하고 있다. 그리고 여기서 눈여겨볼 만한 부분으로 ADTECH 업체들을 들 수가 있다. 이들은 주로 머신러닝이나 딥러닝 기술을 바탕으로 웹 및 모바일/웨어러블 디바이스상에서 새로운 방법으로 광고를 조금 더 친숙하게 소비자에게 중요한 정보로서 전달될 수 있도록 연구하거나 소비자의 행태를 분석하고 예측하는 기법 등을 연구하고 있다.
 
 
3. 광고업계에서의 역할과 기회
 
기존 ADTECH분야에서 주로 사용되어지고 있는 문맥광고나 웹브라우저 쿠키 기반의 광고방식은 주의 깊게 살펴봐야 할 것이다. 즉, 광고가 소비자에게 단순 광고가 아닌 중요한 정보로서 전달 될 수 있도록 하거나 단순히 스쳐 지나갔던 제품 정보들을 다시 리마인드 시켜줘서 구매 욕구를 끌어 올리도록 유도하는 행위는 ADTECH에서 중요한 전달 방식일 것이다. Affectiva 사와 같이 동영상 광고를 보는 소비자의 감성을 실시간으로 분석하여 감성을 극대화할 수 있는 영상을 개별적으로 제공한다든지 길거리에 널려있는 오프라인 광고판에서 개별 유저들의 얼굴을 인식하고 그에 따라 각각 다른 영상을 볼 수 있게 제공하는 사례는 매우 흥미로운 사례로 볼 수 있다.
 
그리고 애플 사의 시리(Siri)와 같은 IPA(Intelligent Personal Assistant) 서비스들은 날로 발전하여 소비자의 행동양식을 스스로 배울 것이며 음성 및 영상 등의 자연스러운 인터페이스(음성, 홀로그램, 가상현실 등)를 통해 웨어러블 디바이스나 사물인터넷으로 연결돼있는 어떠한 디바이스던 간에 소통하며 소비자에게 적절한 답을 줄 것이다. 이러한 지능적인 문제를 해결하기 위한 중요한 기술의 핵심이 머신러닝 및 딥러닝이다. 과거 연구실이나 대학원에서 연구하는 특정인들을 대상으로만 구현되고 활용되어오던 머신러닝 기술 스택들이 이제는 그 장벽을 허물어 누구나가 손쉽게 데이터만 가지고 있다면 클릭 몇 번으로 나만의 머신러닝, 딥러닝 모델들을 만들어 낼 수 있는 시대가 왔다(https://studio.azureml.net/, https://deepcumen.com).1 이들 기술의 흐름과 사용법을 알고 광고인들만의 독창적이고 창의적인 마인드가 융합된다면 15초는 빨리 넘기고 싶은 시간이 아닌 삶을 살아가는 데 있어 중요한 팁이 될 수 있는 귀중한 시간이 될 수 있지 않을까. 또는 그런 세상이 오기를 필자는 기대해본다.

인공지능 ·  딥러닝 ·  머신러닝 ·  빅데이터 ·  ADTECH ·  GPU · 
이 기사에 대한 의견 ( 총 0개 )
[월간 2024밈] 12월 편 - 사실 넘 부러웠어요
  •  사실 넘 부러웠어요 •  아이폰 스티커가 이모티콘으로!? •  집에서 만드는 초간단 트리?밖에서 만드는 동물 눈사람??  •  도레미 챌린지 •  가나디? 귀여워?    사실 넘 부러웠어요   상대방이 부러울 때 사용하기 좋은 '사실 넘 부러웠어요' 밈. 틱톡의 댓글에서 시작된 밈이
[Column] 광고의 사회적·문화적·경제적 순기능
광고는 자유 시장경제를 추구하고 있는 사회에서 다양한 역할들을 수행하고 있다. 때로는 사람들에게 풍요로운 삶을 제안하여, 인생의 목표를 수정하게 하고, 현실의 고독함을 미래의 희망으로 대체하기도 한다. 또 때로는 그 풍요로운 삶의 제안으로 인해 평범한 사람들에게 허탈감을 느끼게 한다. 그러나 문명사회에서 광고는 사람들과의 관계 속에서 그 역할이 결정되고, 사회의 다른 제도들과 통합적인 기능을 할 때 인간의 희망적인 삶이 광고로 인해 형성될 수 있다는 점은 분명하다. 따라서 광고가 현재 인간과 사회에 어떤 기능을 하고 있는지를 살펴본다면 광고가 미래에 무엇을 어떻게 해야할 것인지를 예측할 수 있을 것이다.
2023년 광고 시장 결산 및 2024년 전망
2023년 연초 광고 시장에 드리웠던 불안한 예감은 현실이 됐다. 지난 2021년 20.4%라는 큰 성장 이후 2022년 5.4% 재 성장하며 숨 고르기로 다시 한번 도약을 준비하던 광고 시장이었다. 하지만 발표된 다수의 전망들은 2023년 광고 시장의 축소를 내다보고 있다. 한국방송광고진흥공사에 따르면 2023년 광고비는 전년 대비 3.1%p 하락으로 전망됐고, 이중 방송 광고비는 17.7% 감소가 예상됐다.
[어텐션, 크리에이터]2023 최다 조회수 인기 쇼츠 TOP 5
하루에도 수없이 올라오는 유튜브 쇼츠. 그중에서도 소수의 영상만이 알고리즘의 선택을 받아 대중에게 널리 널리 퍼진다. 그렇다면 과연 지난해엔 어떤 쇼츠가 우리들의 눈길을 사로잡았을까? 올해 콘텐츠를 준비하기에 앞서 2023년 가장 많은 조회 수를 끈 쇼츠를 복습해 보자.
[캠페인 하이라이트] MCC 고베식당을 이야기하다
크리에이티브 컨설팅, 실행을 담보로 할 수 있을 것인가? ‘MCC 고베식당’ 프로젝트는 둘로 나뉘어진다. 바로 컨설팅과 실행이다. 그 둘이 함께 붙어 있기에 힘을 발휘한 프로젝트였고, 또한 둘로 나뉘어 있기에 어려운 프로젝트기도 했다. 2010년 4월 27일 매일유업에서 날아든 굵직한 숙제 하나. “우유하던 우리가 카레를 하려고 하는데, 어떻게 하면 잘 할지… 총체적으로 해봐!” 그렇게 시작된 숙제는 제일기획으로서는 새로운 ‘제품 컨설팅’ 의 영역이었다. 지금 이 시점, ‘ 크리에이티브 컨설팅’이라 명명된 우리만의 USP(Unique Selling Point)가 되어가고 있지만 초기만해도 가뜩이나 압도적 독점브랜드가 있는 시장 상황 속에 제품개발도 완결되지 않은, 유통도 가격도 결정되지 않은 실로 막막한 프로젝트였다.
[Special] 커뮤니케이터가 일하며 꼭 알아야 할 Bible Site
생각의 축을 쌓아 가속도를 붙여야 할 순간, 방전된 배터리처럼 아무 생각도 나지 않는 분, 마케팅 회사에 다닌다는 이유로 늘 트렌드에 앞서야 한다는 중압감을 갖고 계신 분, 쌓이는 일감 앞에 한 호흡 길게 쉬어가는 여유가 필요하신 분 우리가 ‘커뮤니케이터’라는 이름으로 살아가며 몰라서는 안 될 Bible Site를 각 영역별 전문가가 추천합니다.
[캠페인 하이라이트] MCC 고베식당을 이야기하다
크리에이티브 컨설팅, 실행을 담보로 할 수 있을 것인가? ‘MCC 고베식당’ 프로젝트는 둘로 나뉘어진다. 바로 컨설팅과 실행이다. 그 둘이 함께 붙어 있기에 힘을 발휘한 프로젝트였고, 또한 둘로 나뉘어 있기에 어려운 프로젝트기도 했다. 2010년 4월 27일 매일유업에서 날아든 굵직한 숙제 하나. “우유하던 우리가 카레를 하려고 하는데, 어떻게 하면 잘 할지… 총체적으로 해봐!” 그렇게 시작된 숙제는 제일기획으로서는 새로운 ‘제품 컨설팅’ 의 영역이었다. 지금 이 시점, ‘ 크리에이티브 컨설팅’이라 명명된 우리만의 USP(Unique Selling Point)가 되어가고 있지만 초기만해도 가뜩이나 압도적 독점브랜드가 있는 시장 상황 속에 제품개발도 완결되지 않은, 유통도 가격도 결정되지 않은 실로 막막한 프로젝트였다.
스토리텔링 방식으로 재구성된 기업 소개 콘텐츠! HSAD, ‘웹어워드 코리아 2024’ 최우수상 수상
  - 자사 포트폴리오와 기업 소개 방식을 스토리텔링 방식으로 재구성해 차별화 - 브랜드&마케팅 비즈니스 등 전문가 칼럼 콘텐츠 제공해 전문성과 신뢰도 높여   올해 1월 리뉴얼한 HSAD 공식 홈페이지가 '웹어워드 코리아 2024'에서 대기업 분야 최우수상을 수상했습니다.   ‘웹어워드 코리아’는 한국인터넷전문가협회(KIPFA)가 주최하는 국내 최고 권위의 웹 평가 시상식으로,
우리가 궁금한 소비 트렌드가 여기에! <2025 D.라이프 시그널 리포트>
  어느새 다가온 2025년. 새해에 우리는 어떤 변화를 맞게 될까요? 라이프스타일과 비즈니스는 어떻게 달라질까요? 대홍기획이 발간한 <2025 D.라이프 시그널 리포트>에서 그 시그널을 확인해보세요. 우리 주변의 흥미로운 현상들, 파편처럼 보이던 이슈를 이어 그 저변을 관통하는 소비와 비즈니스의 맥락을 찾을 수 있답니다!   Q 대홍기획이 발행하는 <D.라이프 시그널 리포트>란 무엇인가요?
AI와 쏨땀
2024 ADFEST를 한 달 남짓 남겨둔 어느 날, OpenAI에서 비디오 생성 AI ‘소라(Sora)’를 발표했다. 지금껏 봐왔던 생성형 AI와는 차원이 다른 결과물에 많은 이들이 충격에 빠졌다. 이런 타이밍에 ADFEST 참가자들이 올해 행사에 기대하는 바는 더욱 분명했을 것이다. 준비되지 않은 우리 앞에 성큼 다가와 버린 AI 시대, 광고의 미래는 과연 어떻게 될 것인가? 스포를 하자면, 모든 강연자가 그 우려 섞인 질문에 대해 ‘걱정 없다’는 답을 내놓았다.
[Special] 커뮤니케이터가 일하며 꼭 알아야 할 Bible Site
생각의 축을 쌓아 가속도를 붙여야 할 순간, 방전된 배터리처럼 아무 생각도 나지 않는 분, 마케팅 회사에 다닌다는 이유로 늘 트렌드에 앞서야 한다는 중압감을 갖고 계신 분, 쌓이는 일감 앞에 한 호흡 길게 쉬어가는 여유가 필요하신 분 우리가 ‘커뮤니케이터’라는 이름으로 살아가며 몰라서는 안 될 Bible Site를 각 영역별 전문가가 추천합니다.
[캠페인 하이라이트] MCC 고베식당을 이야기하다
크리에이티브 컨설팅, 실행을 담보로 할 수 있을 것인가? ‘MCC 고베식당’ 프로젝트는 둘로 나뉘어진다. 바로 컨설팅과 실행이다. 그 둘이 함께 붙어 있기에 힘을 발휘한 프로젝트였고, 또한 둘로 나뉘어 있기에 어려운 프로젝트기도 했다. 2010년 4월 27일 매일유업에서 날아든 굵직한 숙제 하나. “우유하던 우리가 카레를 하려고 하는데, 어떻게 하면 잘 할지… 총체적으로 해봐!” 그렇게 시작된 숙제는 제일기획으로서는 새로운 ‘제품 컨설팅’ 의 영역이었다. 지금 이 시점, ‘ 크리에이티브 컨설팅’이라 명명된 우리만의 USP(Unique Selling Point)가 되어가고 있지만 초기만해도 가뜩이나 압도적 독점브랜드가 있는 시장 상황 속에 제품개발도 완결되지 않은, 유통도 가격도 결정되지 않은 실로 막막한 프로젝트였다.
스토리텔링 방식으로 재구성된 기업 소개 콘텐츠! HSAD, ‘웹어워드 코리아 2024’ 최우수상 수상
  - 자사 포트폴리오와 기업 소개 방식을 스토리텔링 방식으로 재구성해 차별화 - 브랜드&마케팅 비즈니스 등 전문가 칼럼 콘텐츠 제공해 전문성과 신뢰도 높여   올해 1월 리뉴얼한 HSAD 공식 홈페이지가 '웹어워드 코리아 2024'에서 대기업 분야 최우수상을 수상했습니다.   ‘웹어워드 코리아’는 한국인터넷전문가협회(KIPFA)가 주최하는 국내 최고 권위의 웹 평가 시상식으로,
우리가 궁금한 소비 트렌드가 여기에! <2025 D.라이프 시그널 리포트>
  어느새 다가온 2025년. 새해에 우리는 어떤 변화를 맞게 될까요? 라이프스타일과 비즈니스는 어떻게 달라질까요? 대홍기획이 발간한 <2025 D.라이프 시그널 리포트>에서 그 시그널을 확인해보세요. 우리 주변의 흥미로운 현상들, 파편처럼 보이던 이슈를 이어 그 저변을 관통하는 소비와 비즈니스의 맥락을 찾을 수 있답니다!   Q 대홍기획이 발행하는 <D.라이프 시그널 리포트>란 무엇인가요?
AI와 쏨땀
2024 ADFEST를 한 달 남짓 남겨둔 어느 날, OpenAI에서 비디오 생성 AI ‘소라(Sora)’를 발표했다. 지금껏 봐왔던 생성형 AI와는 차원이 다른 결과물에 많은 이들이 충격에 빠졌다. 이런 타이밍에 ADFEST 참가자들이 올해 행사에 기대하는 바는 더욱 분명했을 것이다. 준비되지 않은 우리 앞에 성큼 다가와 버린 AI 시대, 광고의 미래는 과연 어떻게 될 것인가? 스포를 하자면, 모든 강연자가 그 우려 섞인 질문에 대해 ‘걱정 없다’는 답을 내놓았다.
[Special] 커뮤니케이터가 일하며 꼭 알아야 할 Bible Site
생각의 축을 쌓아 가속도를 붙여야 할 순간, 방전된 배터리처럼 아무 생각도 나지 않는 분, 마케팅 회사에 다닌다는 이유로 늘 트렌드에 앞서야 한다는 중압감을 갖고 계신 분, 쌓이는 일감 앞에 한 호흡 길게 쉬어가는 여유가 필요하신 분 우리가 ‘커뮤니케이터’라는 이름으로 살아가며 몰라서는 안 될 Bible Site를 각 영역별 전문가가 추천합니다.
[캠페인 하이라이트] MCC 고베식당을 이야기하다
크리에이티브 컨설팅, 실행을 담보로 할 수 있을 것인가? ‘MCC 고베식당’ 프로젝트는 둘로 나뉘어진다. 바로 컨설팅과 실행이다. 그 둘이 함께 붙어 있기에 힘을 발휘한 프로젝트였고, 또한 둘로 나뉘어 있기에 어려운 프로젝트기도 했다. 2010년 4월 27일 매일유업에서 날아든 굵직한 숙제 하나. “우유하던 우리가 카레를 하려고 하는데, 어떻게 하면 잘 할지… 총체적으로 해봐!” 그렇게 시작된 숙제는 제일기획으로서는 새로운 ‘제품 컨설팅’ 의 영역이었다. 지금 이 시점, ‘ 크리에이티브 컨설팅’이라 명명된 우리만의 USP(Unique Selling Point)가 되어가고 있지만 초기만해도 가뜩이나 압도적 독점브랜드가 있는 시장 상황 속에 제품개발도 완결되지 않은, 유통도 가격도 결정되지 않은 실로 막막한 프로젝트였다.
스토리텔링 방식으로 재구성된 기업 소개 콘텐츠! HSAD, ‘웹어워드 코리아 2024’ 최우수상 수상
  - 자사 포트폴리오와 기업 소개 방식을 스토리텔링 방식으로 재구성해 차별화 - 브랜드&마케팅 비즈니스 등 전문가 칼럼 콘텐츠 제공해 전문성과 신뢰도 높여   올해 1월 리뉴얼한 HSAD 공식 홈페이지가 '웹어워드 코리아 2024'에서 대기업 분야 최우수상을 수상했습니다.   ‘웹어워드 코리아’는 한국인터넷전문가협회(KIPFA)가 주최하는 국내 최고 권위의 웹 평가 시상식으로,
우리가 궁금한 소비 트렌드가 여기에! <2025 D.라이프 시그널 리포트>
  어느새 다가온 2025년. 새해에 우리는 어떤 변화를 맞게 될까요? 라이프스타일과 비즈니스는 어떻게 달라질까요? 대홍기획이 발간한 <2025 D.라이프 시그널 리포트>에서 그 시그널을 확인해보세요. 우리 주변의 흥미로운 현상들, 파편처럼 보이던 이슈를 이어 그 저변을 관통하는 소비와 비즈니스의 맥락을 찾을 수 있답니다!   Q 대홍기획이 발행하는 <D.라이프 시그널 리포트>란 무엇인가요?
AI와 쏨땀
2024 ADFEST를 한 달 남짓 남겨둔 어느 날, OpenAI에서 비디오 생성 AI ‘소라(Sora)’를 발표했다. 지금껏 봐왔던 생성형 AI와는 차원이 다른 결과물에 많은 이들이 충격에 빠졌다. 이런 타이밍에 ADFEST 참가자들이 올해 행사에 기대하는 바는 더욱 분명했을 것이다. 준비되지 않은 우리 앞에 성큼 다가와 버린 AI 시대, 광고의 미래는 과연 어떻게 될 것인가? 스포를 하자면, 모든 강연자가 그 우려 섞인 질문에 대해 ‘걱정 없다’는 답을 내놓았다.